Local minimality of $\mathbb{R}^N$-valued and $\mathbb{S}^N$-valued Ginzburg–Landau vortex solutions in the unit ball $B^N$
نویسندگان
چکیده
We study the existence, uniqueness and minimality of critical points form $m_{\varepsilon,\eta}(x) = (f_{\varepsilon,\eta}(|x|)\frac{x}{|x|}, g_{\varepsilon,\eta}(|x|))$ functional \[ E_{\varepsilon,\eta}[m] \int_{B^N} \Big[\frac{1}{2} |\nabla m|^2 + \frac{1}{2\varepsilon^2} (1 - |m|^2)^2 \frac{1}{2\eta^2} m_{N+1}^2\Big]\,dx \] for $m=(m_1, \dots, m_N, m_{N+1}) \in H^1(B^N,\mathbb{R}^{N+1})$ with $m(x) (x,0)$ on $\partial B^N$. establish a necessary sufficient condition dimension $N$ parameters $\varepsilon$ $\eta$ existence an escaping vortex solution $(f_{\varepsilon,\eta}, g_{\varepsilon,\eta})$ $g_{\varepsilon,\eta}> 0$. also its local minimality. In limiting case $\eta 0$, we prove degree-one Ginzburg-Landau (GL) energy every $\varepsilon > 0$ $N \geq 2$. Similarly, when to $\mathbb{S}^N$-valued GL model arising in micromagnetics $2 \leq N 6$.
منابع مشابه
Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space
A new method for constructing Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space is presented. In earlier research, we only dealt with scalar-valued weight functions. Now the class of weight functions involved is enlarged to encompass Clifford algebra-valued functions. The method consists in transforming the orthogonality relation on the open unit ball into ...
متن کاملHILBERT SPACES OF TENSOR-VALUED HOLOMORPHIC FUNCTIONS ON THE UNIT BALL OF Cn
The expansion of reproducing kernels of Bergman spaces of holomorphic functions on a domain D in Cn is of considerable interests. If the domain admits an action of a compact group K, then naturally one would like to decompose the space of polynomials into irreducible subspaces of K and expand the reproducing kernels in terms of the reproducing kernels of the finite dimensional subspaces. In [5]...
متن کاملUsing the Set-Valued Bouncing Ball for Bounding Zeno Solutions of Lagrangian Hybrid Systems
In this paper, we study Zeno behavior in Lagrangian hybrid systems, which are mechanical systems with unilateral constraints that are undergoing impacts. Zeno solutions involve an infinite number of impacts occurring in a finite amount of time (the Zeno time). In such systems, one is typically not able to explicitly compute the Zeno time and Zeno limit point, and even not to detect a Zeno solut...
متن کاملLATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES
We study L-categories of lattice-valued convergence spaces. Suchcategories are obtained by fuzzifying" the axioms of a lattice-valued convergencespace. We give a natural example, study initial constructions andfunction spaces. Further we look into some L-subcategories. Finally we usethis approach to quantify how close certain lattice-valued convergence spacesare to being lattice-valued topologi...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2023
ISSN: ['0294-1449', '1873-1430']
DOI: https://doi.org/10.4171/aihpc/84